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Forwards and futures

In many situations, it is good risk management to fix today the price at which an asset will be
purchased in the future. Here are two examples:

e Consider a company regularly buying gold as an input for its business, e.g. that company could

transform gold to make jewelry. This company is clearly exposed to the (random) fluctuations
of the gold price. More specifically, it would suffer from an increase in the price. In this case,
it may be a good idea to enter into a financial agreement that fixes the price of gold today for
delivery in the future. Therefore, the cost of jewelry made over the next few weeks/months
can be known in advance.
An insurance company based in the U.S. but also doing business in Canada is exposed to
changes in the currency rate between the U.S. dollar (USD) and the Canadian dollar (CAD). It
could enter into a financial agreement to fix today the exchange rate between these currencies
that will apply in the future.

Forward contracts and futures contracts can be used specifically for this purpose: fix today
the price of a good to be bought in the future. They are also commonly known as forwards and
futures, without the word contract or agreement attached to them.

The role of this chapter is to provide an introduction to forwards and futures. The specific
objectives are to:

e recognize situations where forward contracts and futures contracts can be used to manage
risks;
understand the difference between a forward contract and a futures contract;
replicate the cash flows of forward contracts written on stocks or on foreign currencies;
calculate the forward price of stocks and of foreign currencies;
calculate the margin balance on long and short positions of futures contracts.

3.1 Framework

This section lays the foundations of forwards and futures for the rest of the chapter. The content
applies regardless of the underlying asset.

3.1.1 Terminology

A forward contract or a futures contract is a contract that engages one party to buy (and the
other to sell) an asset some time in the future for a price determined today at inception of the
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contract. That time in the future is known as the expiration, maturity or delivery date whereas
the said price is known as the delivery price.

The most important difference between forwards and futures is that futures are standardized
and exchange-traded. Exchanges require investors to hold money aside to protect both sides of
the transaction from default risk. This is usually known as the process of marking-to-market.
This difference aside, forwards and futures serve the same purpose: fixing today the price at
which an asset will be bought in the future.

Forward contracts and futures contracts also differ from spot contracts:

® A spot contract is agreed upon today between a buyer and a seller, the asset is paid for and
delivered (almost) immediately.

o A forward (futures) contract is also agreed upon today but the asset will be paid for and
delivered at maturity of the forward (futures) contract.

Therefore, if you need to acquire the asset, say in 3 months, then instead of waiting 3 months
and buying the asset on the spot market and paying a price viewed as random today, the forward
contract fixes that price today.

To simplify the presentation of this chapter, we will start by looking at forward contracts and
we will come back to futures contracts in Section 3.5.

3.1.2 Notation

Let us begin with the following standard notation:

® K is the delivery price;
e T is the maturity date.

We say that delivery of the underlying asset will occur at time T or that the forward contract
will mature at time T.

Entering the long position of a forward contract, or said differently buying a forward contract,
does not usually require an initial payment/premium. However, to avoid arbitrage opportuni-
ties, this restriction will have an impact on the right value of K. For now, we will consider that
K can take any value and that entering a forward contract might require, or not, an upfront
payment. We will come back to this issue later when we discuss the forward price.

The cash flows of a forward contract are:

At inception (at time 0), both parties agree on K (and on T') and an up-front premium might
be required (paid by the forward buyer (long position) to the forward seller (short position)),
or vice versa.

At maturity (at time T), the investor with the long position pays K and receives the underlying
asset worth S, from the investor with the short position, no matter what the realization of
the random variable Sy is. This is illustrated in Figure 3.1.

Delivery price K

-

Long Short

<

Asset worth S

Figure 3.1 Cash flows of a forward contract at maturity




Example 6.4.4 Put-call parity on a stock index
The S&P 500 index is currently at 1000. A 6-month option to sell the index for 990 cur-
rently trades for 25 whereas a similar option to buy the index trades for 50. You also know
that the (average) dividend yield generated by the stocks in the index is 3% (continuously
compounded). What is the price of a 6-month Treasury zero-coupon bond?

Let By, be the initial price of a 6-month zero-coupon bond (with face value 1). Using the
put-call parity of equation (6.4.6), we get

50 — 25 = 1000e%93%0-> _ 990 x B,

We get By = 0.9698.

6.5 American options

As discussed in Chapter 5, European and American options differ on when the investor is
allowed to exercise its option, i.e. when she can buy or sell the underlying asset. In an American
option, the holder has the right to exercise at any time before or at maturity time 7 whereas an
European option can be exercised only at the expiration date.

In practice most traded stock options are American. Moreover, many equity-linked insurance
policies have American-like riders, i.e. insureds have additional rights that can be exercised at
any convenient date for the policyholder.

A very important question that arises is when an option buyer should exercise. Unfortunately
this is not an easy question to answer; we will come back to it later in the book when assuming
a dynamic for the stock price. The focus of this section is rather to determine whether or not an
American option should be exercised before maturity, and how early exercise affects an option
price.

6.5.1 Lower bounds on American options prices

We will first compare European and American options that are otherwise identical, i.e. they are
written on the same underlying asset, have the same strike price and maturity. To simplify the
comparison, let us denote by Pf and Pf the time-¢ value of an American put and a European
put, respectively. Also, let us denote by Cf‘ and Cf the time-¢ value of an American call and a
European call, respectively. We will use this notation temporarily, until the end of this section.?

Comparing European and American option prices

Intuitively, an American option should be worth at least as much as its European counterpart
because an American option holder is able to exercise any time prior to or at maturity. As it gives
more flexibility, it should have more value; otherwise there would be an arbitrage opportunity
because a rational investor should not lose from having the possibility to exercise early. This is
the case for both call and put options.

Indeed, assume instead that the European call is worth more than its American counterpart,
i.e. assume Cg‘ < Cg. In this case, we buy the American option, sell the European option and
invest the (positive) difference Cg - C{)* at the risk-free rate. We hold on to the American call
until maturity, i.e. we do not exercise early, so both options will offset each other at maturity.

2 In this book, and unless stated otherwise, the option is European.




We will thus end up with the profits generated by the risk-free investment. The same strategy
works for put options and for any other time ¢ between inception and maturity.
In conclusion, we have obtained the following relationships:

PA>PE and CA>CE (6.5.1)

forall0<t<T.

Comparing with the exercise value
The (early-)exercise value or intrinsic value of an American option is the amount received
upon exercise. Take, for example, an American put struck at K with expiration date 7. The
holder can decide at any time 0 < ¢ < T to receive K in exchange for delivery of an asset worth
S,: the (early-)exercise value of this put is then K — S,.

From equation (6.4.3) and equation (6.5.1), we have that

CA > CE > max(S, - Ke",0} > S, - K, (6.5.2)

for any 0 < ¢ < T. In particular, we have Cf > S, — K. In other words, at any time ¢ during its
life, the price of the American call option is larger than its exercise value S, — K.

This is also true for American put options: forany 0 < ¢t < T, we have P? > K - §;.If, at some
time ¢, we observe Pf‘ < K — S, then there is an arbitrage opportunity: we buy the American
put and exercise it right away, making an immediate risk-less profit of K — S, — Pf‘ > 0.

Note that we have not said that American option prices are strictly greater than their early-
exercise values, as they could be equal. Those (random) times when the American option price
equals its early-exercise value play an important role in the timing of early exercise. As the latter
question will only be answered later, we now focus our attention on whether a rational investor
should early-exercise an American call or put.

6.5.2 Early exercise of American calls

In equation (6.5.1), we have verified that an American call is always worth at least as much
as its European counterpart, i.e. CA > CE. It would be natural to think/believe that this last
inequality is in fact a strict inequality. The idea behind this belief is that the underlying stock S
may reach its maximum value at some point in time during the life of the option, so that early
exercise would be optimal at that time. In fact, this is never the case for American calls written
on non-dividend-paying stocks:

1t is never optimal to early-exercise an American call written on a non-dividend-paying stock.

Indeed, even if an investor believes the stock price has reached its peak value at some time ¢,
then the American call price Cf‘ still is larger than its early-exercise value, as obtained above.
Mathematically, for all £, we have

CA>S, - K,

(see also equation (6.5.2)) no matter how large S, is. This means that if the underlying stock
S reaches a lifetime maximum, then the American call option price CA will also contain this
information and be worth more. Consequently, early-exercising an American call option at any
time ¢ is sub-optimal in the sense that we replace a financial position worth C;\ by another
position worth less, that is S, — K.




For the compound annual ratchet, the computation is tedious, but we have

10

max (I X H(l + f max(y;, 0)), GT> =(1+0.8x%x0.0222) x (1 + 0.8 x 0.0204) X ...

k=1
X (1+0.8x0)=1.332979.

Thus, the maturity benefit is
max(100 x 1.332979, 100) = 133.30.

Finally, the maximum value of the reference index is observed at time 9 (at the end of
the 9-th year), i.e. Migo = 1317.11 and hence the high watermark benefit is

Ix (1+ BRT™) =100(1+ 0.8 x 0.31771) = 125.3688. [ |

8.3 Variable annuities

In what follows, we will use the name variable annuity (VA) for another popular sub-class of
ELIA contracts. They are constructed with a separate account, also known as the sub-account
of the contract, where the initial investment is deposited and credited with returns from a
reference portfolio (underlying asset). The policyholder is then allowed to withdraw from
this sub-account either for liquidity purposes during the accumulation phase or simply to
purchase an annuity at retirement (annuitization phase). This sub-account is subject to a set of
guarantees that apply at maturity or death, making VAs typical hybrids between insurance and
investment.

One of the most important difference between EIAs and VAs is how guarantees are financed,
i.e. how they are paid for by the policyholder. As mentioned before, in an EIA contract, the
cost of the guarantee is paid implicitly through the participation rate f that lowers the upside
potential. In a VA contract, premiums are withdrawn periodically from the sub-account and are
usually set as a fixed percentage of the sub-account balance, acting again like a penalty on the
credited returns. As before, these premiums also include management fees, operating expenses,
taxes, etc. The sum of these expenses is known as the management and expense ratio
(MER).2

The generic name for this type of ELIA contract is separate account policy. In the U.S,, it is
known as a VA, in Canada, as a segregated fund, and in the U.K., as a unit-linked contract. They
borrow their name from typical regulations that prevent insurance companies from mixing
assets backing variable annuities with other investments.

8.3.1 Sub-account dynamics

The insured’s initial investment A, = I is deposited in a sub-account. This sub-account is then
credited with the returns of the reference portfolio. Also, it is from this sub-account that fees
are deducted and that policyholder withdrawals will be made.

2 In the industry, the initial investment is often known as the premium whereas periodic contributions made by

the policyholder to pay for the guarantee and other costs (MER) is known as a fee instead of a premium. We will
keep using the terms initial investment and periodic premium so that the vocabulary is consistent with actuarial and
financial mathematics.




Let the sub-account value at time k (after kK months or years) be denoted by A;, where
k =1,2,...,n The sub-account value is adjusted periodically and it is not allowed to become
negative so that deductions (withdrawals, fees) must be such that A; > 0 for each k. With this
notation, the index # corresponds to the maturity time 7. More specifically, the sub-account
dynamic is given by

S
A=A X S—k X(l—a)—w; aslongasA; >0, (8.3.1)
k-1

where « is the fee/premium rate deducted from the sub-account at the end of the period and
where @; is the amount withdrawn by the policyholder, at the end of the k-th period (as long
as it is less than the sub-account value prior to the withdrawal).

We can describe equation (8.3.1) as follows: the sub-account balance A is obtained by cred-

iting returns Sf—fl to the previous sub-account balance A;_;, then deducting the proportional
periodic premium (done by multiplying by (1 — «)) and finally deducting the policyholder’s
withdrawal ;. Again, unless stated otherwise, all the parameters and quantities are given and
computed on an annual basis. Finding the fair value of « is a typical problem for insurance com-
panies and is a concept related to finding the no-arbitrage price of an option: more details in
Chapter 18.

If we set Ap_ =A;_; X % X (1 —a), i.e. if A;_ is the value of the sub-account just after

deducing the fee but just before the k-th withdrawal, then we can rewrite (8.3.1) as follows:
Ak =Ak— —Cl)k lfa)k <Ak_.

Note that depending on the VA policy, there might be restrictions on withdrawals and guar-
antees might be adjusted based on the amounts withdrawn.

Example 8.3.1 Sub-account balance after 1 year

An investor puts $100 in the sub-account tied to a VA policy. The periodic premium is set
to 1% per annum. The investor plans on withdrawing $5 at the end of the year, if the funds
are available.

Assume the following scenario: the reference portfolio will grow by 4% over the next
year. Let us compute the value of the sub-account balance at the end of the year, i.e. after
the withdrawal, in this scenario.

Here, we have A, = 100, w; =5, « = 0.01. In this scenario, we have S; /S, = 1.04 and
therefore the sub-account balance at year-end would be

S
A, =A0><S—1><(1—a)—a)1 =100 % 1.04X 0.99 — 5 = 102.96 — 5 = 97.96.
0

Note that we were allowed to withdraw w; = 5 from the sub-account sincew; =5 < A;_ =
102.96.

In this scenario, in the second year, the return of the reference portfolio would be applied
to a sub-account balance of 97.96. |

Example 8.3.2  Sub-account balance during a year
A retiree puts $120 in the sub-account tied to a VA policy. If the premium paid at the end of
each month is 0.1% of the (monthly) balance and if the contract allows for withdrawals of




16.1 Model

As in the binomial and the trinomial models, the Black-Scholes-Merton model (BSM model)
is assumed to be a frictionless market composed of two assets:

® arisk-free asset (a bank account or a bond) which evolves according to the risk-free interest
rate r;
e arisky asset (a stock or an index) with a known initial value and unknown future values.

Trades in this market can occur at any continuous time ¢ > 0 and therefore the BSM frame-
work is a continuous-time market model. We assume that time is always expressed in years
(even if it is possible to do otherwise) so that parameters are written on an annual basis. We
will mostly work on a time horizon [0, T] where T is very often the maturity of a derivative.

16.1.1 Risk-free asset

In the BSM model, there is an asset B = {B;,0 < ¢ < T'} from which investors can earn an inter-
est rate of . This asset is said to be risk-free because capital and interest is repaid with certainty:
there is no default. Thus, r > 0is known as the risk-free rate and it is assumed to be continuously
compounded, ie. for0 <t < T,

Bt = Boert.

As before, we set By = 1. Note that, we could also have fixed B, = 1 instead of B, in which case
B would be modeling a zero-coupon bond.

16.1.2 Risky asset

In the BSM model, the price of the risky asset (often an index or a stock) S = {S,,0 <t < T}
evolves according to a geometric Brownian motion

2
S; =Soexp{<;4— %) t+0'Wt}, (16.1.1)

where W = {W,,0 < ¢ < T} is a standard Brownian motion (with respect to the probability
measure ) and S is a known quantity (initial asset price).
It follows from Section 14.5 that

S, ~ LN <ln(So) + (u - ";) t, 02t>

i.e. for each time 0 <t < T, the random variable S, follows a lognormal distribution with

parameters In(S,) + ( H— %2 ) t and o2t (with respect to the actuarial probability P measure).
Finally, note that the BSM model can be fully specified by four parameters: Sy, y, ¥ and ¢ > 0.
We can also express the model for the risky asset in terms of log-returns. On any given year,
the log-return is such that

In(S,,,/S,) ~ N (,4 - ";,02)

2
i.e. the continuously compounded annual return is normally distributed with mean y — % and
variance ¢2. As a result, ¢ is called the volatility of the log-return.




